Comparison of Liquid Water Dynamics in Bent Gas Channels of a Polymer Electrolyte Membrane Fuel Cell with Different Channel Cross Sections in a Channel Flooding Situation

نویسندگان

  • Jin Hyun Kim
  • Gwang Goo Lee
  • Woo Tae Kim
چکیده

The transport characteristics of water slugs in a bent gas channel of a polymer electrolyte membrane (PEM) fuel cell are numerically studied using the volume of fluid (VOF) method. To investigate the effects of channel cross-sectional shape in a channel flooding situation, the gas channels (GCs) with one rectangular and two trapezoidal cross sections are compared. Parametric studies are also conducted to evaluate the effects of the contact angle of the top and side walls, the contact angle of the gas diffusion layer (GDL) surface, and the air inlet velocity. Considering both of the water volume fraction (WVF) and GDL water coverage ratio (WCR), the trapezoidal channel with open angles of 60 degrees provides the most favorable performance in a channel flooding condition. Among all the top and side wall contact angles considered, the hydrophobic contact angle of 120 degrees shows the best results. Among the three GDL contact angles of 90, 110 and 140 degrees, the hydrophobic GDL contact angle of 140 degrees provides the most favorable water removal characteristics in a channel flooding situation. For all cross-sectional shapes, the water removal rate increases and the liquid water interface shows more complex patterns as the air inlet velocity increases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drops, Slugs, and Flooding in Polymer Electrolyte Membrane Fuel Cells

The process of flooding has been examined with a single-channel fuel cell that permits direct observation of liquid water motion and local current density. As product water flows through the largest pores in the hydrophobic GDL, drops detach from the surface, aggregate, and form slugs. Flooding in polymer electrolyte membrane (PEM) fuel cells occurs when liquid water slugs accumulate in the gas...

متن کامل

Numerical Investigation of the Effect of Gas Diffusion Layer with Semicircular Prominences on Polymer Exchange Membrane Fuel Cell Performance and Species Distribution

A three-dimensional computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both gas distribution flow channels and Membrane Electrode Assembly (MEA) is developed. A set of conservation equation is numerically solved by developing a CFD code based on the finite volume technique and SIMPLE algorithm. In this research, some parameters like oxygen consumption, water...

متن کامل

Study of flow and heat transfer characteristics in a periodic zigzag channel for cooling of polymer electrolyte fuel cells

In this study, a periodic zigzag channel with rectangular cross-section has been used in order to obtain a high-efficiency system for cooling a polymer electrolyte fuel cell. An appropriate function of fuel cells and enhancement of their lifetime require uniform temperature conditions of around 80°C. On the other hand, due to volume and weight constraints, a low-density compact heat exchanger i...

متن کامل

Modeling and simulation of a new architecure stack applied on the PEM Fuel Cell

To simulate a new economical architecture for PEM fuel cell and investigate the effectiveness of the introduced structure on the performance, computational fluid dynamics (CFD) code is used to solve the equations for a single domain of the cell namely: the flow field, the mass conservation, the energy conservation, the species transport, and the electric/ionic fields under the assumptions of st...

متن کامل

Parametric study of the influence of cooling channel dimensions on PEM fuel cell thermal performance

In a polymer membrane fuel cell more than half of the chemical energy of hydrogen is converted to heat during generation of electricity. This causes an increase in the cell temperature. The Cooling field design has a significant role in cell cooling. The cell's performance and stability are reduced due to inappropriate heat dissipation. In this paper, the cooling flow and heat transfer in cooli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017